Preliminary communication

THE SYNTHESIS OF FUNCTIONALISED SILVLTRIFLATES*

ALAN R. BASSINDALE* and TIM STOUT

Department of Chemistry, The Open University, Walton Hall, Milton Keynes, MK7 6AA (Great Britain)

(Received January 30th, 1984)

Summary

The cleavage of R_2SiXY (R = alkyl, phenyl; X = H, Cl, Y = α -Np, Ph, Cl, H) by triflic acid is selective, leading to new difunctional silyltriflates, $R_2SiXOTf$, with the relative ease of cleavage of Si-Y being, α -Np>Ph>Cl>H>>Me, Et, Bu

The highly reactive silultriflates, R_3 SiOTf and R_2 Si(OTf)₂ are proving extremely valuable reagents in organic chemistry [1-3]. Only a limited number of such compounds have been synthesised, and only those with R = alkyl, or aryl have been reported [1-4]. This paper describes the simple synthesis of a variety of functionalised silultriflates.

The most common route to silultriflates involves the direct reaction of R_3SiX with triflic acid [5].

 $R_3SiX + CF_3SO_3H \longrightarrow R_3SiOSO_2CF_3 + HX$

 $(X = Cl [5], H [6], Ph [6], CH_2CH=CH_2 [6], CH_3 [6])$

We chose to investigate the reaction of R_2SiXY with triflic acid for its specific

 $R_2SiXY + CF_3SO_3H \longrightarrow R_2SiXOSO_2CF_3 + HY$

 $(X, Y = \alpha$ -Np, Ph, Cl, H; R = Me, Et, Bu^t)

This reaction has the twin advantages of avoiding expensive reagents, such as silver triflate [7], and using readily available starting materials. Prior to this study, no information was available concerning the relative ease of cleavage of various groups from silicon by triflic acid, except for the inference that alkyl groups are least likely to be removed [6]. The results and reaction conditions

^{*}In honour of Professor Makoto Kumada for his many years of outstanding research and teaching in the field of organometallic chemistry.

are given in Table 1, and show that compounds $R_2SiXOTf$ can be synthesised readily by highly selective cleavages. It can be inferred from the table that the ease of replacement of Si-Y by Si-OTf decreases in the order, α -Np>Ph>Cl> H>>Me, Et, Bu^t. In no cases were competitive cleavages of Si-X or Si-R observed.

TABLE 1

R ₂ SiXY	R ₂ SiXOTf	Isolated yield (%) ^a	B.p. (°/mmHg)	Reaction conditions b
Me, SiHCl	Me, SiHOTf ^c	95	123/760	stirred 5 min
Me, SiHPh	Me, SiHOTf ^c	86	123/760	stirred 5 min
H, SiPh	H, SIOTf	see ref. 9		immediate reaction
Bu^tPhSiClPh	Bu ^t PhSiClOTf ^c	92	70/0.01	stirred 30 min
Ph ₃ SiBu ^t	Ph, SiBu ^t OTf ^c	73	115/0.02	silane dissolved in CHCl ₃ ,
•	•			30 min reflux
Cl ₃ SiPh	Cl ₃ SiOTf ^c	85	35/25	60° for 3 h
(±)-α-NpPhMeSiH	PhMeSiHOTf	d		silane dissolved in CHCl ₃ ,
				stirred 10 min
Ph, MeSiH	PhMeSiHOTf ^c	93	67/0.8	stirred 5 min

THE SYNTHESIS OF NEW SILVLTRIFLATES, R2SIXOTf, FROM R2SIXY AND TRIFLIC ACID

^a All reactions essentially quantitative by ¹H NMR. ^b Unless otherwise stated, equimolar quantities of reagents used, triflic acid added dropwise to neat silane at ambient temperature, distilled after stirring. All reactions and atmospheric pressure distillations carried out under a blanket of dry nitrogen. ^c Satisfactory microanalytical data were obtained. ^d All spectral properties identical to the product obtained from Ph₂ MeSiH, not isolated.

For characterisation, we isolated the products by distillation, or crystallisation, but for use in synthesis the reagents can be used in situ.

Some comment is necessary on some of the individual compounds. Preliminary studies indicate that $HSiMe_2OTf$ may be a very useful reagent as it is significantly more reactive than the more common Me_3SiOTf . Similarly, the highly hindered Ph_2Bu^tSiOTf provides an attractive, alternative route to hydrolytically stable protected alcohols etc. [8].

We have opened up a possible route to simple, chiral, bifunctional, organosilicon compounds, through the selective cleavage of $(\pm)-\alpha$ -NpPhMeSiH to give PhMeSiHOTf. If the reaction is stereoselective this could have important applications in chiral syntheses. Further studies are in progress.

The first silultriflate containing no organic groups, Cl_3SiOTf , was prepared from PhSiCl₃, and isolated as a pure compound. This compound apparently shows little promise as a reagent as it forms insoluble, unreactive complexes with amines, such as pyridine [9].

Silyltriflate H_3 SiOTf is readily formed from PhSiH₃, and was characterised by its NMR spectra. *Caution*. Silyltriflate cannot be isolated pure by distillation at atmospheric pressure as the explosive silane, SiH₄, is formed by disproportionation [9]. H_3 SiOTf with Et₃N can be used to form silyl enol ether in the same manner as other silyltriflates.

There is some evidence from our work that the cleavage of phenyl groups from silicon by triflic acid involves radicals, at least as a competitive route. Cleavage of Ph_3SiBu^t with carefully purified triflic acid, and in all glass appara tus, produced a persistent red colour giving a strong, unresolved ESR signal and biphenyl was obtained in approximately 25% yield from the reaction mixture.

Table 2 gives ¹H and ²⁹Si NMR spectra for a variety of silvltriflates which should be of use to workers using the reagents in situ.

TABLE 2

¹H AND ²⁹Si NMR DATA FOR SILYLTRIFLATES

Silyltriflate	¹ H NMR ^a	²⁹ Si NMR ^a
Me, SiHOTf ^b	δ 0.57d, J 2.9 Hz, 6H, CH ₃ ; δ 4.98q, J 2.90 Hz, 1H, SiH	δ 24.8, J(SiH) 233 Hz
H, SiOTf ^b	δ 4.2s, SiH	δ -23.2, J(SiH) 254 Hz
CL SIOTf C		δ18.3
Ph. Bu ^t SiOTf ^b	δ 7.3–7.8m, 10H, Ph; δ 1.21s, 9H, CH,	δ 12.7
Me. SiOTf b	δ 0.48s, CH.	δ 43.4
Et. SiOTf C	δ 1.01-1.06m	δ 45.1
Bu ¹ Me. SiOTf C	δ 0.48s, 6H, CH ₂ ; δ 1.0s, 9H, (CH ₂) ₂ C	δ 45.6
Bu ^t PhSiClOTf ^b	δ 1.14s, 9H, CH ₃ ; $δ$ 7.5–7.77m, 5H, Ph	δ 10.2
PhMeSIHUTI 9	δ 7.3–7.7m, 5H, Ph	δ 11.9

^a Chemical shifts, δ (ppm) referenced to internal TMS. ^b 5–10% in CDCl₃. ^c 5–10% in CD₃ CN.

References

- 1 H. Emde et al., Synthesis, (1982) 1.
- 2 R. Noyori, S. Murata and M. Suzuki, Tetrahedron, 37 (1981) 3899.
- 3 E.J. Corey and P.B. Hopkins, Tetrahedron Lett., 23 (1982) 4871.
- 4 P.J. Stang, M. Hanack and L.R. Subramanian, Synthesis, (1982) 85.
- 5 E.J. Corey, H. Chi, C. Rucker and D.H. Hua, Tetrahedron Lett., 36 (1981) 3455.
- 6 G.A. Olah, A. Hussain, B.F.B. Gupta, G.F. Salem and S.C. Narang, J. Org. Chem., 46 (1981) 5212.
- 7 M. Riediker and W. Graf, Helv. Chim. Acta, 62 (1979) 205. 8 T.P. Mawhinney and M.A. Madson, J. Org. Chem., 47 (1982
- T.P. Mawhinney and M.A. Madson, J. Org. Chem., 47 (1982) 3336.
- 9 The behaviour of H₃ SiOTf is very similar to that of H₃ SiI, as reported by H.J. Campbell-Ferguson and E.A.V. Ebsworth, J. Chem. Soc. A, (1967) 705. H₃ SiOTf with Et₃ N gives a solid analysing as $(Et_3N)_{1.4}$ SiH₃ OTf and which gave Si NMR resonance at δ -74.1 and -82.1 appropriate to Et₃ N•SiH₃ OTf and (Et₃ N)₂•SiH₃ OTf. (Cl₃ SiOTf behaves similarly to SiCl₄ with pyridine in forming Py, SiCl, OTf.)